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A global Observing System Simulation Experiment (OSSE) framework has been
developed at the National Aeronautics and Space Administration Global Modeling
and Assimilation Office (NASA/GMAO). The OSSE uses a 13-month integration of
the European Centre for Medium-Range Weather Forecasts (ECMWF) operational
model as the Nature Run, and the Goddard Earth Observing System version-5
(GEOS-5) forecast model with Gridpoint Statistical Interpolation (GSI) data
assimilation as the forecast model. Synthetic observations have been developed with
correlated observation errors to replicate the observing network from 2005–2006.

The performance of the GMAO OSSE in terms of forecast skill and observation
impacts is evaluated against real observational data for the same period. Metrics
of anomaly correlation of 500 hPa geopotential and root-mean-square error of
temperature and wind fields for 120 h forecasts are calculated for once-daily forecasts
from July 2005, and an adjoint is used to measure observation impacts of different
data types. The forecast skill of the OSSE is found to be slightly higher than for real
data, with smaller observation impacts overall, possibly due to insufficient model
error in the OSSE. While there is similar relative ranking of observation impact
for most data types in the OSSE compared with real data, for individual satellite
channels the agreement is not as good. Some caveats and difficulties of using the
OSSE system are discussed along with recommendations of how to avoid potential
pitfalls when performing OSSEs. Copyright c© 2012 Royal Meteorological Society
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1. Introduction

Observing System Simulation Experiments (OSSEs) are
modelling studies used to evaluate the potential improve-
ment in numerical weather forecasts due to the introduction
of a new observing system. An OSSE can be performed
before the new observing system is developed, and many
different variations and variables can be tested to deter-
mine the optimal design and deployment of the new
system. As demonstrated by Errico et al. (2007), OSSEs

are also powerful tools for investigating the behaviour of
data assimilation systems (DASs).

An OSSE consists of three components: an extended free
run of a forecast model that represents ‘truth’ for the OSSE,
referred to as the Nature Run (NR); a full set of synthetic
observations for all observation types currently ingested
into operational DAS with values derived from the NR
fields; and a second forecast model and DAS that are used
with the synthetic observations to generate the experimental
forecasts. The model used to generate the NR and that used

Copyright c© 2012 Royal Meteorological Society



N. C. Privé et al.

for the second forecast model should be different to avoid
the identical-twin problem of insufficient model error. The
NR should have higher resolution than the second forecast
model, and should accurately represent the atmospheric
features that are to be studied in the experimental forecasts.
Synthetic observations should have temporal and spatial
distribution similar to real-world observations, and should
have appropriate added errors.

An OSSE has been developed at the National Aeronautics
and Space Administration (NASA) Global Modeling and
Assimilation Office (GMAO). This OSSE uses a 13-month
free run of a 2006 version of the European Centre for
Medium-Range Weather Forecasts (ECMWF) operational
numerical weather prediction model as the NR. The
Goddard Earth Observing System Model, Version-5 (GEOS-
5) (Rienecker et al., 2008) forecast model with Gridpoint
Statistical Interpolation (GSI) data assimilation (Kleist et al.,
2009) is used for the forecast experiment model.

It is important to verify that the OSSE behaves in a way
that is sufficiently similar to the real world for the results
to be of value. This verification process has several stages:
evaluation of the NR behaviour in comparison to the real
atmosphere, calibration of the synthetic observations, and
testing of the OSSE system as a whole. The behaviour of
the entire GMAO OSSE system is addressed in this article;
evaluation of the ECMWF NR was addressed by Reale et al.
(2007), Masutani et al. (2007) and McCarty et al. (2012),
and calibration of the synthetic observations was discussed
by Errico et al. (2012).

Previous OSSEs have often used simple calibration
methods, or were uncalibrated. One method of calibration
that has been used is the data-denial experiment (Masutani
et al., 2006), where observation impact is measured for both
synthetic and real data. Observation minus analysis and
observation minus background statistics have also been used
for calibration of OSSEs (Stoffelen et al., 2006). However,
calibration has generally been measured using few metrics,
simply to verify adequate performance of the OSSE system,
and not as a method for improving the OSSE behaviour.
The approach taken for calibration of the GMAO OSSE
differs in that the synthetic observations were iteratively
adjusted through repeated calibration tests to improve the
performance of the OSSE system.

This article describes the performance of the GMAO OSSE
in terms of forecast metrics and observation impacts. The
development of the OSSE is detailed in section 2, and analysis
of the experiments is described in section 3. Section 4 gives
a discussion of the results.

2. Set-up

A detailed description of the components of the GMAO
OSSE is given by Errico et al. (2012); a brief overview is
given here.

The NR was generated by ECMWF as part of a larger joint
OSSE cooperative effort using the operational forecast model
version c31r1. The run was performed from 01 May 2005 to
31 May 2006 at T511 resolution with 91 vertical levels. The
only forcings were sea surface temperature and sea ice; these
were taken from archival data from the same time period.

Synthetic observations were generated based on the tem-
poral and spatial distribution of real archived observations
during the period of the NR. Conventional data types were

created by interpolating the NR fields to the time and loca-
tion of recorded observations. Radiance observations were
created using the Community Radiative Transfer Model
(CRTM; Han et al., 2006) to generate brightness tempera-
tures calculated from the NR fields, including a simplified
treatment of cloud effects using the NR high-, mid-, and
low-cloud fractions. The archived radiance data were par-
tially thinned prior to creation of the synthetic observations
to reduce the computational cost.

Errors were added to the synthetic data to simulate a
combination of observation error and representativeness
error. Some representativeness error is also intrinsic to the
synthetic observations due to the difference in resolution
between the NR and the forecast model. Uncorrelated errors
were added to all observation types and an additional
component of correlated errors was added to some types.
Vertically correlated errors were added to conventional
sounding data types, horizontally correlated errors were
added to AMSU, HIRS, and MSU∗ observations, channel
correlated errors were added to AIRS†, and both vertically
and horizontally correlated errors were added to satellite
wind observations. No correlation of errors was applied
between different data types, and observation bias was not
added. The observation errors were calibrated to match the
error correlation, analysis increment, and observation minus
forecast statistics seen for real data; Errico et al. (2012) give
details.

The GEOS-5 atmospheric model version 5.7.1, and GSI
data assimilation system were selected as the forecast model
for experiments. The GEOS-5 model is described in detail
by Rienecker et al. (2008) and the GSI is described by Kleist
et al. (2009). The model resolution used was 0.5◦ in latitude
and 0.625◦ in longitude with 72 vertical layers.

In order to evaluate the performance of the OSSE system,
the GEOS-5 model was cycled for a period from 14 June 2005
to 31 July 2005. Only analyses and forecasts from July 2005
were evaluated as June was treated as a spin-up period
for the system. For each day of the period, 120 h forecasts
were launched from 0000 UTC. This process was performed
twice: (i) using archived real observations from this period
(Control), and (ii) using the synthetic observations with
calibrated errors added (OSSE). The analysis and forecast
error statistics were compared to evaluate how well the OSSE
emulates the real world. An adjoint of the GEOS-5 model
and analysis system was used to estimate the impacts of
individual observation types on the 24 h forecasts (Gelaro
and Zhu, 2009).

3. OSSE evaluation

The metrics that are used to investigate a new observing
system with an OSSE include observation impacts relative
to other data types, forecast anomaly correlations, and
root-mean-square (RMS) forecast errors verified against
the NR. When evaluating the performance of the OSSE,
these metrics should be tested in comparison to real-world
metrics in order to validate the results of the OSSE. However,
the corresponding true state of the real atmosphere is not
known, so validation of the OSSE must be performed by
calculating these metrics with verification against the analysis

∗Advanced Microwave Sounding Unit; High-Resolution Infrared
Sounder; Microwave Sounding Unit.
†Atmospheric InfraRed Sounder.
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(a) (b)

(c) (d)

Figure 1. Anomaly correlations for 500 hPa geopotential for forecasts from 2 July to 30 July 2005 for (a, b) Control, and (c, d) OSSE over the (a, c)
Northern Hemisphere midlatitudes and (b, d) Southern Hemisphere midlatitudes. The thin black lines represent individual forecasts.

Table 1. Mean anomaly correlation for 24 h and 120 h forecasts over
2 July–30 July 2005 calculated using a Fisher z transform over the Northern

Hemisphere (NH; 30–90◦N), and Southern Hemisphere (SH; 30–90◦S).

24 h 120 h
NH SH NH SH

Control 0.988 0.992 0.771 0.777
OSSE 0.991 0.995 0.816 0.826

state rather than against the NR. It is also important that
the OSSE not be ‘over-tuned’ and that correct results are
not due to incorrect behaviour. This can be determined
by examination of analysis increment statistics and other
measures of how the data assimilation system handles the
observation information.

The GMAO OSSE has undergone evaluation of certain
analysis statistics during calibration and validation of the
synthetic observations (Errico et al., 2012). Observation
innovation (observation minus background) and analysis
increment (analysis minus background) metrics in the
troposphere were used to tune synthetic observation errors
and verify the OSSE behaviour. It was found that the analysis
statistics were significantly improved by the addition of
correlated observation errors for radiance and satellite wind
observations. The fully tuned OSSE was found to have
observation innovation and analysis increment statistics

that were quite similar to the statistics of assimilation of real
data, although the variance of the analysis increment was
slightly smaller in the OSSE.

3.1. Forecast statistics

OSSEs are often used to evaluate the potential impact of
new observing systems on multi-day forecasts; therefore
the OSSE forecasts should behave similarly to operational
forecasts. A frequent concern is that the forecast model and
the NR model will be too similar, resulting in insufficient
forecast error in the OSSE.

Anomaly correlations of 500 hPa geopotential are
frequently used to measure the accuracy of forecasts in the
midlatitudes. The anomaly correlations for the Northern and
Southern Hemispheres (NH, SH) are shown as functions of
forecast hour in Figure 1 and the means of the 24 h and 120 h
anomaly correlations are listed in Table 1. As the anomaly
correlation distribution is not normal, a Fisher z transform
(e.g. Buizza, 1997) is used to calculate the mean. At 120 h
the mean of the forecast skill is higher in the OSSE than in
the Control in both hemispheres, but there is no significant
difference in the forecast skill between OSSE and Control at
24 h, using a Mann–Whitney U test (Mann and Whitney,
1947) to determine significance at the 95% level.

The spread of forecast skill in Figure 1 shows significant
differences between the Control and OSSE in the NH. The
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Figure 2. Root mean square 24 h (solid lines) and 120 h (dashed lines) forecast error verified against analysis for the Control (black lines) and OSSE
(grey lines), areal mean for zonal wind (m s−1). (a) 30–90◦N, (b) 30–90◦S, and (c) 30◦N–30◦S.
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Figure 3. As Figure 2 but for T (K).

OSSE has a tight cluster of forecasts near the mean with
only a few low-skill forecasts, while the Control does not
show clustering and has more lower-skill forecasts. For the
SH, there is a better match between the OSSE and Control
forecast skill spread, with some clustering at higher skill
along with numerous lower-skill forecasts. There can be
considerable differences in month to month predictability
and forecast skill due to the synoptic state of the atmosphere,
so that forecasts over several additional Julys would be
needed to determine if differences in the forecast skill spread
of the OSSE is systematically different from that of the
Control. Unfortunately, only a single year is available for the
current NR.

Root-mean-square error (RMSE) between the forecast
and verifying analysis is also a useful metric for evaluating
forecast skill, particularly in the Tropics. Figures 2 and 3
illustrate the 24 h and 120 h forecast RMSE for zonal wind
and temperature as functions of model level. The Tropics
show very good agreement between the OSSE and Control
cases in terms of RMSE for specific humidity (not shown),
wind, and temperature for the 24 h forecasts. By 120 h, the
OSSE has smaller RMSE temperature than Control in the
lower and middle troposphere Tropics, but shows good
agreement for temperature at upper levels and for wind
throughout the tropical troposphere.

In the midlatitudes, agreement in RMSE between the
Control and OSSE is better in the NH than the SH. At
the 24 h forecast, the NH temperature RMSE is 4–12%
higher in the Control with wind error 10–15% higher than
in the OSSE. The wind error remains 10–15% higher for
the Control at 120 h, with the temperature error difference

increasing slightly to 8–12%. In the SH, the RMSE mismatch
between the Control and OSSE decreases from 20–25% for
both wind and temperature at 24 h to 10% for temperature
and 4–12% for wind at 120 h.

The forecast error can be separated into monthly mean
error (forecast ‘bias’) and anomaly error (forecast error
minus bias). The area-averaged global root mean square
mean error (RMSME) and root mean square anomaly
error (RMSAE) are calculated and shown in Figure 4 for
temperature and Figure 5 for zonal wind. The RMSME at
the 24 h forecast for zonal wind is 20% smaller for the OSSE
than Control in the SH and 15% smaller in the NH. The
discrepancy diminishes slightly in the midlatitudes for the
120 h forecast, with 7–12% smaller RMSME difference in
the NH zonal wind and 7–18% smaller RMSME difference
in the SH. This suggests that the climatology of the GEOS-5
model zonal wind is closer to the NR climatology than to
the real climatology in the midlatitudes. The magnitude of
the RMSME is smaller than the magnitude of the RMSAE,
so this difference in climatologies plays only a minor role in
the total forecast error of the Extratropics. In the Tropics,
the zonal wind RMSME increases from 3–11% at the 24 h
forecast to 9–12% error by 120 h.

The RMSME for temperature is 8–21% smaller in the SH
in the OSSE than the Control at the 24 h forecast, decreasing
to 8–11% at 120 h. However, larger temperature RMSME is
found in the OSSE in the NH upper troposphere, where the
error is almost 40% higher than the Control near 200 hPa
at the 120 h forecast. In the Tropics, the upper-tropospheric
RMSME is also larger in the OSSE than the Control, although
the tropospheric vertical mean difference is only 1% at 120 h.
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Figure 4. Comparison of 24 h (solid lines) and 120 h forecast error (dashed
lines) versus analysis for the Control (black lines) and OSSE (grey lines) for
temperature (K). (a, c, e) show RMSME, and (b, d, f) show RMSAE. (a, b)
30–90◦N; (c, d) 30–90◦S; (e, f) 30◦S–30◦N.
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Figure 5. As Figure 4, but for zonal wind u (m s−1).

The spatial correlation between the OSSE and Control
mean error fields is shown in Figure 6(a, c), and an
illustration of the mean error distribution for the Control
and OSSE temperature at 356 hPa is shown in Figure 7(a, b).
The largest correlations are found in the Tropics, with
near zero or anticorrelation seen in the SH midlatitudes.
This implies that the difference in the mean error between
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Figure 6. Spatial correlation of the 120 h forecast error between Control
and OSSE: solid line, 30–90◦N, dashed line 30–90◦S, dot-dash line
30◦S–30◦N. (a, c) monthly mean forecast error; (b, d) root- monthly
mean-square anomaly forecast error. (a, b) T (K); (c, d) u (m s−1). Note
the different x-axis ranges.

Control and OSSE seen in Figures 4 and 5 is a matter of the
spatial pattern of climatology in the midlatitudes but that
differences in mean error in the Tropics may be dominated
by disparities in the magnitude of climatological features
between the NR and the real world.

The RMSAE magnitude is greater in the Control than
in the OSSE for all regions, with largest discrepancy in the
SH midlatitudes (Figures 4 and 5); because RMSAE is non-
negative, the correlation will be increased. The correlation
of the OSSE and Control standard deviation of anomaly
error is highest in the Tropics and NH midlatitudes, as
seen in Figure 6(b, d), with maps of the RMSAE shown
in Figure 7(c, d). The correlation of anomaly error in
the SH is in the range 0.1–0.4 in the middle and upper
troposphere while the NH correlation range is 0.5–0.7. The
higher correlations in the NH may be due to the strong
influence of continents on the storm tracks in the NH which
is lacking in the SH.

The forecast errors at 24 h and 120 h are decomposed
into power spectra using a Fourier transform along three
latitudes: 50◦N, 50◦S and 0◦N. The spectra for each latitude
are averaged over 25 forecasts from 2 July to 26 July, and
are shown in Figures 8 and 9. The best agreement between
the Control and OSSE cases is seen in the Tropics, where the
spectra are very similar at 24 h and 120 h forecasts. Larger
discrepancies are seen in the midlatitudes, particularly at
wavenumbers less than 10, where the OSSE has lower
spectral amplitude than the Control in the 24 h forecast for
both temperature and zonal wind. There is also a greater bias
in the Control midlatitudes, particularly for zonal wind (not
shown). By the 120 h forecast, the low-wavenumber error
spectra amplitude is very similar overall for the Control
and OSSE. The RMS error has not begun to saturate in the
midlatitudes at 120 h, but error growth in the Tropics has
slowed by this time (not shown).

At high wavenumbers, a variety of behaviours are seen
in the spectra of forecast error. For temperature at 50◦N,
the OSSE error has lower amplitude at 24 h but similar
amplitude to Control at 120 h, while at 50◦S, the amplitude
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Figure 7. 120 h forecast error compared with verifying analysis field for T (K) at the 356 hPa sigma level. (a, b) monthly mean forecast error; (c, d) root-
monthly mean-square anomaly forecast error. (a, c) Control; (b, d) OSSE.
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Figure 8. Frequency spectra of spatial forecast error compared to analysis,
zonal wind (m s−1) for the Control (black line) and OSSE (grey line):
(a, b, c) 24 h forecast, and (d, e, f) 120 h forecast. (a, d) 50◦N; (b, e) 50◦S;
(c, f) 0◦N.

of the OSSE is similar to the Control at 24 h but significantly
higher in the OSSE at 120 h. For zonal wind at 50◦N, the
high-wavenumber error amplitude is similar in the OSSE
and Control at 24 h and 120 h, but at 50◦S the amplitude is
larger in the Control at both 24 h and 120 h.

The lower amplitude of low-wavenumber errors seen in
the OSSE 24 h forecast compared to the Control forecast
could have several sources such as lack of bias added to the
synthetic radiance observations and insufficient model error.
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Figure 9. As Figure 8, but for temperature (K).

Only the uncorrected part of bias in the real observations
would impact the Control analysis, but if the bias of an
observation type changes rapidly in comparison to the 30 day
e-folding time-scale of the relaxation of the bias correction
routines, significant bias may go uncorrected during data
assimilation. This type of bias is not explicitly added to
synthetic observations because it is not well understood or
quantified in real data.

If the error growth rate of large-scale errors is persistently
slower in the OSSE compared to the real world, significant
discrepancies in low-wavenumber error spectra would be
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Validation of the GMAO OSSE

expected at both 24 h and 120 h forecasts. Since a significant
difference between the OSSE and Control is seen in the early
forecast but not the extended forecast, this might indicate
that error growth is too slow during the initial forecast but
that the time-scale for error growth may shorten after the
24 h forecast.

The generally good agreement between the OSSE and
Control error spectra at 120 h for wavenumbers 1–50
lends confidence to the performance of the OSSE in terms
of forecast skill of medium-range forecasts. Because the
discrepancies between the OSSE and Control at high
wavenumber are not consistent, it is not obvious how to
assign a likely source of the differences. For example, insuffi-
cient representativeness error in the OSSE might be expected
to reduce the amplitude of errors at high wavenumbers, but
this is not consistently noted in the results.

3.2. Observation impacts

An adjoint has been developed for GEOS-5 that uses
simplified dry physics; the adjoint is fully described and
evaluated in Gelaro and Zhu (2009). The full physics
trajectories are calculated for 24 h forecasts from both
the analysis and corresponding background at a reduced
horizontal resolution of 1◦ with 72 vertical levels, then
adjoint forecasts are calculated for these trajectories using
a simplified dry physics at the same resolution. The metric
selected for the adjoint is the dry energy norm (Talagrand,
1981; Errico, 2000) which is influenced by the temperature,
surface pressure, and horizontal wind fields. The forecast
error is calculated for the dry energy norm, and the GSI
adjoint (Zhu and Gelaro, 2008) is run at the same resolution
as the model adjoint. The observation impacts are derived
from the GSI adjoint results and the observation innovations.

The adjoint results have been shown (Gelaro and Zhu,
2009) to be comparable to observing system experiment
results for data denial tests. However, the adjoint results omit
some observation impacts, in particular for instruments that
measure humidity –this is due to both the choice of a dry
metric and the absence of moist processes in the adjoint
itself. The adjoint results are a measure of how much ‘work’
observations contribute toward improving the analysis and
short-term forecast. If the quality of the background field
is high, there will be only a limited amount of possible
improvement, and the observation impact will be small.

In order to compare observation impacts between the
Control and OSSE, the forecasts at 24 h were verified against
the corresponding analysis fields. Adjoint calculations were
performed on 27 forecasts starting at 0000 UTC from
2 July 2005 to 31 July 2005, with three missing forecasts
on 3, 17, and 25 July due to data archiving problems.

Observation impacts derived from the adjoint are shown
in Figure 10 for conventional and radiance data types, with a
negative (positive) impact indicating a reduction (increase)
in error of the 24 h forecast due to the observation. The
total observation impact per data type is displayed rather
than the impact per observation; as the data counts in the
OSSE are comparable to the real data Control by design,
comparison of the per observation impacts do not contain
additional information. RAOB‡ and AMSU-A observations
have the greatest impacts on the 24 h forecast, in agreement

‡Rawindsonde Observation.
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Figure 10. Observation impact from adjoint calculations using dry error
energy norm, J kg−1 for the Control (grey bars) and OSSE (black bars).
Error bars indicate 95% confidence interval. (a) radiance and conventional
observation types; (b) AMSU-A impact per channel.

with previous studies of operational numerical weather
prediction systems (Zapotocny et al., 2008). The very small
impact for AMSU-B and conventional humidity data is likely
due to the choice of a dry metric for the adjoint.

The relative magnitudes of observation impacts between
data types is fairly consistent between the Control and OSSE
cases, although those for the OSSE are approximately 30%
smaller than for the Control case for most data types. Given
that the RMSE of the 24 h forecast is lower in the OSSE
than in the Control as described in section 3.1, it is likely
that insufficient model error in the OSSE results in smaller
background error and thus lower observation impacts, as
discussed further in section 4.

Adjoint results can also be narrowed to evaluate particular
regions, levels, or satellite channels. Figure 10(b) shows the
observation impact for AMSU-A calculated per channel.
Impact is low in the OSSE for the significant channels
with the exception of channel 4. The relative impact of
channels 5 to 8 in the OSSE is not consistent with the Control
observation impact ranking. As the discrepancies between
the NR and the real world climatologies are particularly large
near the surface and in the upper atmosphere, it is expected
that those satellite channels which feel surface effects or
peak in the stratosphere or higher may not be represented
well in the OSSE. Channels 5 and 6 for AMSU-A have
weighting functions with significant contribution near the
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surface, while channel 7 has a small contribution from the
surface and channel 8 is not impacted by the lowest levels
of the troposphere; this surface influence on some of the
AMSU-A channels may contribute to the discrepancy in
relative channel impact.

The channel breakdown of observation impacts for AIRS
is shown in Figure 11 for the AIRS channels used by the
GEOS-5 GSI with peak weighting functions below 100 hPa.
Similar to the AMSU-A results, the relative impacts of the
AIRS channels in the OSSE shows gross correspondence
to real data, but the channels with strongest impact are
considerably weaker in the OSSE, and some channels (for
example, channel 1565) even have the wrong sign. There
does not seem to be any correspondence between the height
of the AIRS weighting function peaks and the agreement
between the OSSE and Control case observation impact.

4. Discussion

The ultimate goal of OSSE development is the creation
of a synthetic system with behaviour identical to the real
world; in practice, this goal is unattainable (Rosenblueth
and Wiener, 1945). A more practical objective is to achieve
reasonable agreement with the real world for key properties.
These key properties include both metrics that are intended
for experimental testing in the OSSE system as well as for
the intrinsic behaviours that influence these metrics, so that
‘the right results are seen for the right reasons’ and not due
to overtuning of the system. This is not a trivial process, and
the selection of appropriate metrics should be approached
with care.

Some aspects of the OSSE system can be modified or tuned
to adjust the behaviour of the system, while other aspects
are difficult or impossible to change. The components of
the OSSE that are simplest to change are the synthetic
observations and their explicitly-added error characteristics.
Improvements to the methods used to generate the synthetic
observations, for example increasing the sophistication of
the treatment of clouds, may change the analysis increment
or observation impact of a data type. However, certain
aspects of the OSSE are much more difficult to modify, such
as the forecast model error. If the GEOS-5 forecast model
behaviour is more akin to the ECMWF model than to the
real world, model error will be insufficient and the effects
will be seen both in the quality of the background field and
in the extended forecast skill.

The results of the experiments performed thus far are
not sufficient to determine whether the forecast skill in the
OSSE system is within the same range as forecast skill for
real observations. It is unclear what the month-to-month
variation of forecast skill is in either the Control or OSSE;
in order to determine this, a full year or more of forecasts
might be necessary at great computational expense. Forecast
skill is impacted not only by analysis and model error, but
also by the intrinsic predictability of the atmospheric state.
It is possible that differences in the predictability of the NR
state compared to the real atmosphere during 2005–2006
contribute to the discrepancies in forecast skill. The role of
model error can be quantified in an OSSE setting as it is
possible to initialize the forecast model with the NR fields
for a ‘perfect’ initial condition. Further exploration of these
issues is planned for future investigations.

Given that the forecast skill metrics of the OSSE may
differ from those of the real world, what are the limitations
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Figure 11. As Figure 10, but for tropospheric AIRS channels used in the
GEOS-5 GSI.

of performing experiments? For the GMAO OSSE, forecast
skill in the Tropics is commensurate with the real world
when measured with broad-brush metrics such as RMSE,
but forecast skill in the midlatitudes is slightly higher in the
OSSE. Since the forecast skill has been rather insensitive to
observation error in the OSSE during the calibration process,
it is likely that achieving a better match of midlatitude
forecast skill between the OSSE and real world would be
laborious and difficult if not impossible with the constraints
of the current NR and forecast model.
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The higher forecast skill in the OSSE might be expected to
yield experimental results that underestimate the potential
impact of a new observing system, as there is less
available room for improvement in the forecasts. However,
the difference in skill level of the five-day forecast is
approximately 10% in terms of RMS error and 20% in terms
of anomaly correlation error for real data; this discrepancy
is not overly large and may still yield useful experimental
results. The reduced observation impacts calculated with the
adjoint are likely due to the improved forecast skill in the
OSSE. As the relative ranking of observation impact between
data types is generally preserved in the OSSE, it is anticipated
that a new observing system could be evaluated qualitatively
using the adjoint in the OSSE.

As demonstrated by the AMSU-A and AIRS results in
section 3.2, matching observation impacts between the
OSSE and the real world becomes more difficult when
looking at individual satellite channels. It is also expected
that achieving a good match will be more difficult when
considering regional impacts or more difficult metrics such
as precipitation. When evaluating a new observation type,
this issue becomes even more challenging due to the lack
of real observations for tuning the synthetic observation
generator and observation-error characteristics. One way
to attempt to mitigate this problem is to look at the
performance of similar existing data types in comparison to
real data to determine if the OSSE is capable of accurately
representing the observation impact and behaviour.

Both the ability of the NR to accurately represent
the behaviour of concern and the relative skill of the
OSSE forecasts should be evaluated before performing
experiments. New observing systems that observe at very
high resolution, such as airborne Doppler radar, or
phenomena that likewise require high model resolution to
be accurately portrayed, such as tropical cyclone structure
and intensity, are not suited to study with the present
GMAO OSSE due to the low resolution of the present NR.
Studies of features for which modelling skill is relatively low,
such as precipitation or near-surface fields, should also be
approached with caution.

The robustness of OSSE results can be estimated by
performing multiple experiments that explore the response
of the data assimilation system and forecasts to the new
observations. By varying the observation-error magnitude
and characteristics such as error correlation and by testing
the new observations in multiple seasons and under different
synoptic states, a better understanding of the impact of
the new observational data can be gained. One significant
advantage of the current generation of OSSEs is that
the much longer NR in comparison to previous OSSEs
(Becker et al., 1996) allows for more thorough testing and
exploration of new observations rather than case-studies.
Although the behaviour of the GMAO OSSE is not a perfect
analogue of the real world system, this OSSE has considerably
more sophisticated representations of observations and
observation error than previous OSSEs, and the GMAO
OSSE has also been rigorously calibrated both to improve
the performance and to understand the shortcomings of the
OSSE system.

Although the NR and synthetic observation suite may lag
behind operational modelling advances, an OSSE framework
may be used for an extended period after development. For
example, the OSSE framework described by Becker et al.
(1996) was generated in the mid-1990s and has been used

for experiments for more than a decade (e.g. Cardinali
et al., 1998; Stoffelen et al., 2006; Masutani et al., 2010). The
methods and procedures for NR evaluation and generation
of synthetic observations and their errors can be brought
forward to shorten the development time for the future
incarnations of the OSSE.

In addition to the traditional use of OSSEs for evaluating
new observing systems, the OSSE can be used to explore
the behaviour of data assimilation systems and numerical
weather prediction models; both of these purposes are
of interest for NASA GMAO. Updating the suite of
synthetic observations in the GMAO OSSE to the 2011–2012
dataset is currently underway. Future investigations include
quantifying the relative roles of model error and initial
condition error in the evolution of forecast error and
exploring the impact of observation error on analysis and
forecast skill.
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